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Using the US Covid data at the county level, calculate COVID deaths per 100,000 of the
population registered over the first year of the pandemic (roughly March 2020 –
February 2021). The data in this file have all been normalized. Here are the meanings of
the variables of interest:

population = county population in 2020 
cases_per_ = Covid death rate (normalized) 
pct_poc = Persons of color as share of total population (normalized) 
pct_smoker = Share of population that smoke (normalized) 
pct_povert = Share of population in poverty (normalized) 
pct_obese = Share of population defined as obese (normalized) 
pct_65plus = Share of elderly population (normalized) 
per_dem = Share of Democratic registered voters (normalized) 

Generate a quantile map of the Covid death rate and reporting the results:

The quantile map shows evidence that Covid death rates have positive spatial 
autocorrelation and are non-random. There appears to be clustering in parts around the 
U.S. The darker areas, such as North Dakota, Texas, and Arizona, had higher Covid death 
rates. Covid death rates were lower in areas such as Northern California, Washington, and 
Maine. 
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Determine if there is evidence of spatial autocorrelation in the Covid death rate data using a
reasonable spatial weights scheme:

With rook contiguity, the Z-score is 34.76 which is far from 0. The farther from 0, 
it is more likely to reject the null hypothesis that the spatial distribution of the values of 
Covid death rate are random. The Moran’s I is .386 also shows evidence of positive spatial 
autocorrelation. 
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Determine is there is evidence of significant local spatial clusters of Covid death rates:

The LISA cluster map uses rook contiguity and shows evidence of clustering. 
There is (dark blue) low-low clustering on the West Coast, Colorado, and the Northeast. 
The (bright red) high-high clustering appears areas in such as Arizona, parts of Texas, 
and Louisiana. 

The below map shows the areas with statistical significance. The darker green shaded 
areas are significant at .001, the moderate green areas are significant at .01, and the 
lighter green areas are significant at .05. The coast from Northern California to 
Washington and the Northeast are statistically significant at .001. Overall, some regions have
below average cases and some are above average.
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Regress the Covid death rate against the six independent variables given above. Show
and interpret the regression output (partial regression coefficients, goodness of fit 
statistics).

The regression equation: Y = .0136 + .28321 pct_poc + (-.0194) pct_smoker + 
.117 pct_povert + .148 pct_obese + .128 pc_65plus + (-.168) per_dem, states 
that if the independent variables are 0, then the Covid death rate equals to .0136. 

When interpreting the regression model, the partial regression coefficient shows the 
influence on the dependent variable, holding all other independent variables constant. 
Therefore, if a partial regression coefficient is positive, it positively influences the 
dependent variable (and vice versa). 

For every unit change in pct_poc, Covid death rates increase by .283. For every unit 
change in pct_smoker, Covid death rates decrease by .0194. For every unit in 
pct_poverty, Covid death rates increase by .117. For every unit change in pct_obese, 
Covid death rate increase by .148. For every unit change in pc_65plus, Covid death rate 
increases by .128., and for every change in pct_dem, Covid death rate decreases by 
.168.  All of these independent variables are statistically significant with the exception of 
pct_smoker. 
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The goodness of fit, the R^2 of .143 reveals that the model explains about 14% variance 
in Covid death rates. 

Capture and plot the residuals from the regression. Determine if there is evidence of spatial
autocorrelation in the residuals.

The residual values are the difference between the observed and predicted 
values for the dependent variable, Covid death rates. The darker areas are higher 
values of the residuals. This displays evidence of spatial autocorrelation. The Moran’s I 
of .326 shows that there is evidence of spatial autocorrelation where similar values are 
clustered in different parts of the country. 
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Run spatial lag and spatial error models. Interpret the output from these and show if one
of these models fits the data better than the other.

 In the United States, Covid death rates are spatially related to neighboring areas. An 
independent variable is added to the standard model to represent a spatial lag of the dependent 
variable. The spatial lag of Covid death rates is .517, which is significantly different than 0 at the 
.01 level. The spatial lag exerts influence over the dependent variable, Covid death rates. 
Additionally, the Likelihood Ratio Test 596.22 is the value for the t-statistic that states how much 
the spatial lag is capturing spatial dependence in the data. The Moran’s I for the spatial lag is  -
.019. 
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The following are the results from running the spatial error model. Spatial errors result from 
measurement issues or from the influence of spatially autocorrelated variables that are absent 
from the model but have influence on the other variables included in the model. 

LAMBDA is the spatial error term and is .538 in this model. This value is significant and a higher 
value that the spatial lag error of .517. The Maximum Likelihood Ratio Test is 619.  Therefore, 
the spatial error should be used instead of the spatial lag. The Moran’s I on the spatial error 
model is -.035 which is not statistically significant. Meaning that the spatial dependence has 
been captured by the spatial error test. Lastly, the map of the residuals of the spatial errors 
shows that spatial autocorrelation has been removed and can be applied to the model. 
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Using a stlouis.shp file and the packages spgwr, rgdal, and tmap for spatial analysis and mapping. 

library(sf) 
library(spgwr) 
library(rgdal) 
library(spdep) 
library(tmap) 
setwd("C://Unit 5/data/stlouis")
stlouis2 <- readOGR("C://Unit 5/data/stlouis/stlouis.shp")
#summary(stlouis2) 

qtm(stlouis2) 
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 Run a non-spatial regression of the homicide rate (HR8893) on police expenditure
(PE87) and a local deprivation index (RDAC90) and interpret the output.

The regression model shows if the coefficients on police expenditure and the deprivation 
index were 0, the homicide rate would be .0375, but it’s more important to focus on the 
partial regression coefficients. The model shows that for every unit change in police 
expenditure, homicide rate increases on average by 1.567, holding the deprivation index 
constant. For every unit change on the deprivation index, the homicide rate increases on 
average by 5.29, holding police expenditure constant. Both independent variables are 
statistically significant. With a p-value of 0.000000003194, we reject the null hypothesis 
that independent variables do not have a significant impact on the dependent variable. 
The R^2 shows that 46% of variance in model is explained by the dependent variable, 
homicide rate. Also, the residual standard error is 4.692. The smaller the value, the 
better the fit.

stl2_model <-lm(HR8893 ~ PE87 + RDAC90,data=stlouis2) 
summary(stl2_model) 

## 
## Call: 
## lm(formula = HR8893 ~ PE87 + RDAC90, data = stlouis2) 
## 
## Residuals: 
##  Min  1Q  Median  3Q  Max 
## -8.8749 -2.7648 -0.6719  2.1715 20.2329 
## 
## Coefficients: 
##  Estimate Std. Error t value Pr(>|t|) 
## (Intercept)  0.03748  1.54263  0.024  0.981 
## PE87  1.56705  0.37128  4.221 6.75e-05 *** 
## RDAC90  5.29091  0.82492  6.414 1.14e-08 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 4.692 on 75 degrees of freedom 
## Multiple R-squared:  0.4065, Adjusted R-squared:  0.3906 
## F-statistic: 25.68 on 2 and 75 DF,  p-value: 3.194e-09 
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Using the R package spgwr, show how the R2 and the partial regression coefficients in

the model vary across the study region. Report and interpret the output.

GWRbandwidth <-gwr.sel(HR8893 ~ PE87 + RDAC90,data=stlouis2, adapt=T) 

## Adaptive q: 0.381966 CV score: 2462.794 
## Adaptive q: 0.618034 CV score: 2493.324 
## Adaptive q: 0.236068 CV score: 2309.391 
## Adaptive q: 0.145898 CV score: 2094.679 
## Adaptive q: 0.09016994 CV score: 1394.082 
## Adaptive q: 0.05572809 CV score: 1032.717 
## Adaptive q: 0.03444185 CV score: 903.0778 
## Adaptive q: 0.02128624 CV score: 840.6013 
## Adaptive q: 0.01315562 CV score: 843.9937 
## Adaptive q: 0.01808047 CV score: 837.933 
## Adaptive q: 0.01803978 CV score: 837.9085 
## Adaptive q: 0.0161742 CV score: 837.8115 
## Adaptive q: 0.01701687 CV score: 837.5713 
## Adaptive q: 0.01705756 CV score: 837.5728 
## Adaptive q: 0.01697618 CV score: 837.5709 
## Adaptive q: 0.01666985 CV score: 837.6052 
## Adaptive q: 0.01693549 CV score: 837.5716 
## Adaptive q: 0.01697618 CV score: 837.5709 

gwr.model <-gwr(HR8893 ~ PE87 + RDAC90,data=stlouis2, adapt=GWRbandwidth, hat
matrix = TRUE,se.fit=TRUE) 

gwr.model 

## Call: 
## gwr(formula = HR8893 ~ PE87 + RDAC90, data = stlouis2, adapt = GWRbandwidt
h, 
##  hatmatrix = TRUE, se.fit = TRUE) 
## Kernel function: gwr.Gauss 
## Adaptive quantile: 0.01697618 (about 1 of 78 data points) 
## Summary of GWR coefficient estimates at data points: 
##  Min.  1st Qu.  Median  3rd Qu.  Max. Global 
## X.Intercept. -1.86007  1.34844  3.38473  5.33793 18.08941 0.0375 
## PE87 -3.31961 -0.18401  0.44314  1.00753  2.69020 1.5670
## RDAC90 -9.17972  0.57759  1.87845  6.50702 11.94509 5.2909
## Number of data points: 78 
## Effective number of parameters (residual: 2traceS - traceS'S): 47.66878 
## Effective degrees of freedom (residual: 2traceS - traceS'S): 30.33122 
## Sigma (residual: 2traceS - traceS'S): 2.672647 
## Effective number of parameters (model: traceS): 36.96118 
## Effective degrees of freedom (model: traceS): 41.03882 
## Sigma (model: traceS): 2.297678 
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## Sigma (ML): 1.66663 
## AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 452.7336 
## AIC (GWR p. 96, eq. 4.22): 338.001 
## Residual sum of squares: 216.6572 
## Quasi-global R2: 0.9221223 

results <-as.data.frame(gwr.model$SDF) 
names(results) 

##  [1] "sum.w"  "X.Intercept."  "PE87" 
##  [4] "RDAC90"  "X.Intercept._se"  "PE87_se" 
##  [7] "RDAC90_se"  "gwr.e"  "pred" 
## [10] "pred.se"  "localR2"  "X.Intercept._se_EDF" 
## [13] "PE87_se_EDF"  "RDAC90_se_EDF"  "pred.se.1" 

gwr.map <-cbind(stlouis2, as.matrix(results)) 

The GWR model uses a method like Kernal Density Estimation to examine areas across the 
region. In the Local R^2 map, the darker areas represent where variance of the homicide rate 
is better explained in the model than the lighter areas. For example, the central part of St 
Louis has an R^2 ranging from .8 to 1, meaning that these areas are explaining from 80% to 
100% of the model. The lighter shaded areas have an R^2 ranging from .20 to .40 and have 
less significance in explaining the homicide rate in the model.  

qtm(gwr.map, fill="localR2") 

The below maps of police expenditure and a deprivation index show the impacts for each of the 
independent variables on the dependent variable. The areas with the higher and positive 
coefficients have more of an impact on the homicide rate. For example, in the first map, the 
central area that is shaded dark green have higher, positive coefficients, meaning that the 



15 

homicide rate is more impacted by police expenditure in these areas. The areas that are shaded 
red have coefficients that are negative, and therefore, the homicide rate is negatively impacted 
by police expenditure.  For the deprivation index map, the central area, also shaded dark green, 
are positively and significantly impacted by the deprivation index.  

stl_map2 <- tm_shape(gwr.map) +tm_fill("PE87.1", n=5,style='quantile',title="
PE87 Coefficient")+tm_borders()+tm_layout(frame=FALSE,legend.text.size=.5,leg
end.title.size =.6) 
stl_map2 

## Variable(s) "PE87.1" contains positive and negative values, so midpoint is 
set to 0. Set midpoint = NA to show the full spectrum of the color palette. 
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stl_map3 <- tm_shape(gwr.map) +tm_fill("RDAC90.1", n=5,style='quantile',title
="RDAC90 Coefficient")+tm_borders() +tm_layout(frame=FALSE,legend.text.size=.
5,legend.title.size =.6) 
stl_map3 

## Variable(s) "RDAC90.1" contains positive and negative values, so midpoint 
is set to 0. Set midpoint = NA to show the full spectrum of the color palette

. 




